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Model Reference Adaptive Control of a Time-Varying
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Related to the error dynamics of an adaptive system, averaging theorems are developed for
coupled differential equations which consist of ordinary differential equations and a parabolic
partial differential equation. The results are then applied to the convergence analysis of the
parameter estimate errors in the model reference adaptive control of a nonautonomous parabolic
partial differential equation with lowly time-varying parameters.
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1. Introduction

In the recent control literature, the adaptive
control/identification of distributed parameter
systems are reseiving more attention (Balas, 1983;
Baumeister and Scondo, 1987; Kobayashi, 1988;
Banks and Kunisch, 1989; Miyasato, 1990; Hong
and Bentsman, 1992; Bentsman et aI., 1992; Hong
and Bentsman, I994a, b; Demetriou and Rosen,
1994; Hong, 1997; Baumeister er aI., 1997). There
have been increasing efforts in the last several
years toward the explicit incorporation of time
varying parameters into adaptive control analysis
(Tsakalis and Ioannou, 1993). Also, the aver
aging method has been emerged as a powerful
tool for the analysis of adaptive algorithms. The
aim of this paper is to bring these two streams
together with the hope that the averaging method
can yield extra insights on the adaptive control
process in the presence of time-varying parame-
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ters. The adaptive control design follows that in
(Hong and Bentsman, 1994a), which dealt with
an autonomous parabolic plant, but the presence
of time-varying parameters considered here calls
for new averaging theorems. It is shown that a
similar design methodology can be extended to
systems with time-varying coefficients.

In Section II, the model reference adaptive
control (MRAC) of a time-varying parabolic
system is first introduced with the Lyapunov
redesign method. In Section III, averaging theo
rems are developed for coupled ordinary and
partial differential equations, which are motivat
ed from the error dynamics of adaptive control.
Next, the convergence of parameter errors to zero
is investigated through averaging. Both the treat
ment of time-varying parameters of the parabolic
system and the averaging analysis for coupled
ODE/POE are new; however, the main focus of
this paper is to show the convergence of parame
ter errors to zero through averaging. For detailed
construction of adaptive controllers or related
issues refer to (Astrom and Witten mark, 1995;
Sastry and Bodson, 1989; Bank and Kunisch,
1989). In this manuscript, B, C and L denote
generic constants.
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tion is derived:

Choose

ei> (am- ii) exx+ (bm- Ii) e- (ii;mxx+ Ii;m),
(5)

4=E«e, exx>+(e, ;mxx» -aii- d, (8a)
Ii=E«e, e>+(e, ;m»-ab-b, (8b)

(9)

(7)

(6)

- [ a+ ~r-[b + ~ J}
~-allleI12+a2(1i, b).

where ( • , • >is the inner product in space L 2(0,

I) defined as (h, g>= [h(x, t)g(x, t) dx, and

with the induced norm II • II. Differentiating (6)

with respect to t along (5) yields:

. I· _.:.
V(t)=(e, e>+-g(iiii+bb)

=am(ex, exx>+bm(e, e>+ii[ -(e,

exx>-(e, ;mxx>+-iaJ

+ Ii[ -(e, e>-(e, ;m>+-itJ.

where a is a positive constant (a-modification,
see Tsakalis and Ioannou, 1993). Substituting
(8a, b) into (7) yields:

V=-am(ex, ex>+bm(e, e>

-2~{1i2+li2+[ii+ ~r+[b+ ~r

e(O, t) =e(l, t) =0,

e (x, 0) =;o(x) -;mo(X).

Now, consider a functional V : L 2 (0, I) X R 2 -+

R+ such that

where al and a2 are positive constants. The
existence and uniqueness of the solutions of (5)
and (8a, b) are addressed in Appendix A. Now
the above development is summarized as follows:

Theorem 1 : Consider equations (5) and (8a,
b). Assume that a and b are bounded with
bounded derivatives. Then all signals in the
closed loop are uniformly ultimately bounded.

Proof : The conclusion directly follows by
extending the work of Corless and Leitmann
(1981) .

~t=a(Et);xx+b(Et);+U, O~x~l, t;;::O,
(I)

2. Problem Setup

;t=(am-ii);xx+(bm- Ii);+r, (4)
11 -11 -where ii = ii - a, b = b - b are the parameter

estimation errors. Note that if ii= Ii=0, then (4)
is exactly the same as (2). Introducing the state
error e =; - ;m, the following state error equa-

where the subscript m stands for model, and r =

r(x, t) is the reference signal. Note that gaU)
and gbU) could also be thought of as the bound
ary reference signals. Constant coefficients am >0
and bm<0 are assumed.

Now adopting the procedure in (Hong and
Bentsman, 1994a), consider a control law of the
form

;(0, t) <s«(t), ;(1, t) =gb (t),

;(x, 0) =;o(x),

where u w u i», t) is the control input, ;=;(x,
t) is the distributed state, ;t = ~/ dt, and ;xx=
if;/ GX2. The coefficients a (Et) and b (Et) are
bounded slowly varying parameters, where E

indicates the slowly varying nature of the system.
Specifically, in heat transfer they are referred to as
the heat conductivity and radiation factor, respec
tively. Assume 0< e<{ I, so that the variation is

slow, i. e. da(Et)/dt=O(E) and db(Et)/dt=O
(E). However, the amplitude variations of the

parameters are large, i. e. a i.et) = 0 (I), b i.et) =

0(1). For instance, at.et) =2-sin(Et), bt.et) =
-2+cos(et) would be plausible examples.

Along with system (I), consider a reference
model with the same boundary conditions:

;mt=am;mxx+bm;m+r, O~x~l, /;;;;0 (2)
;m(O, t) =gaU), ;m(1, t) =gb(t) ,
;m(X, 0) =;mo(X),

Consider a nonautonomous parabolic partial
differential equation of the form

u=(am-ii);xx+(bm-b);+r, (3)

where ii and b are adaptive estimates to be
specified. Substituting (3) into (1) yields the
closed loop plant equation as



170 Keum-Shik Hong, Kyung-Jinn Yang and Dong-Hunn Kang

Remark 1 : If a and b are constant, i. e., a=

6=0, then ll2 in (9) can be set to zero (see Hong
and Bentsman, I994a) . This implies that (6) is a
Lyapunov function, and therefore the stability of
an equilibrium point (e, a, b)= (0, 0, 0) is
guaranteed. Furthermore, the convergence of the
state error e to zero is also guaranteed by Bar
balat's Lemma (Narendra and Annaswamy,
1989) or by the uniqueness and semigroup prop
erties of the solution (Hong, 1997). In our case,
however, the time-varying behavior of the system
does not allow this situation in general.

Remark 2 : It will be shown in Section 3,
however, that if the system is slowly varying, a
and b converge to zero, and therefore ll2 con
verges to zero. This will eventually achieve the
model following control problem for the time
varying plant. In averaging analysis, the adapta
tion law is also assumed to be slow, but it is
relatively faster than the time-varying behavior of
the plant.

Remark 3 : The differential equations for the
controller parameters in (3) are written as

4=d<e, exx>+<e, ~mxx» -aa, (10)

b =d<e, e>+<e, ~m» -ab.

In (Bentsman et al., 1992; Hong and Bentsman,
1994b), averaged systems corresponding to (8a,
b) have been explicitly computed. Associated
with (5), a frozen state Cr. 0 (.) is defined through

elk. 0= (a m- a) enlr. 0+ (bm- b)er. 0

- [~mxx ~m] e (12)

where parameters a and b are assumed to be
frozen, and

ellr. o=iJer. o(x, t)/at,
enl r. o=(fe r. stx. O/iJx2

•

The word "frozen" means that a and bare
treated fixed in (12).

3. Averaging Analysis

Consider the coupled system

e'=c/(t, er
, e', et), (13)

ef= (am - a') e;x+ (bm - b') e'
- [a'~mxx+ b'~m]' (14)

(13) and (14) correspond to (II) and (5),

respectively. The superscript e is affixed to denote
the variables in fast time t prior to a time scaling.
An averaged system associated with (13) is
introduced as

Note that 1 ( .) is a functional rather than a
function of e. The explicit appearance of time t
as an argument in 1 comes from the exogenous
signal e The first e in front of 1 denotes the
adaptation gain, and the second c, as an argument
of I, denotes the existence of slow-varying param
eters. If the two c's are different, the bigger one
can be chosen as the representative one.

Two things are noted for (10) : The tuning laws
are implementable and the positive constant a has
been intentionally introduced to improve the
robustness of the adaptive system. It is remarked
that the same conclusions of averaging analysis
can be deduced with or without this a-modifica

tion.
Now we turn to the analysis of parameter error

convergence to zero through averaging. Define 8
= [a sr ;then (Sa, b) can be written as fol
lows:

(15)

(17)

if the limit exists uniformly in t . It is assumed that

I/(a, 0, 0, O)I~B, and I/al'(O, O)I~B. With a
new time scale (slow time) r=ct, (15) can be
rewritten as

The closeness of the two solutions of the pri
mary system (13) and averaged system (15) is
now investigated. With a sufficiently small e.
(13) is integrated in t and is re-scaled to the slow
time r=ct as follows:

eal'(t) = clal' (8al'(t), et)

where the averaged function is defined by

I i"lal'(8al" et) =lim-T I(a, eal', e'(a), ett da
r-~ t

( 16)

8,(r) =8'(rc-1
) =e'(O) +clrr-'/dla, (18)

where/.,.=/(a, 8'(a), er(a), eo). The subscript
c denotes the re-scaled variable in the slow time.

(11)e=cI(t, 8, e, et),
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Similarly, for the averaged system (15) and the re
-scaled system (17) the following is obtained:

8a(r) = 8all (rs")

=8a(0) +clw1/all(Ba(ca), eai da. (19)

Now subtracting (19) from (18), we have

LI,(r) =8,(r) -8a(r) =LI,(O) +l,(r), (20)

where

LI,(0)=8'(0)-8a(0), (21)

l,(r) =cl
w'[fa-Iall

(Ba (so) , e;(J)]da. (22)

By introducing a frozen state as an intermediate

state between 10' and lall' the evaluation of (22)
can be carried out in two stages as follows:

l,(r) =1<A(r) +I <1l(r) , (23)

where 1<A (r) = e1"-'[f0'- I (a, 8a(ca), e'O'.BaC'O')

(a), e:a)] da, (24)

lEs(r) =e:l
w 1[f(a,

8a(e:a), eEO'.Ba(EO')(a),

eo) - lall (8a (se). e:a)] do. (25)

Note that the first integral 1<A (r) deals with the
approximation of the fast system 10' by the frozen

system 1'.Ba( • ), whereas the second integral lEB

(r) deals with the approximation of the frozen
system 1 r ,Ba ( .) by the averaged system lall ( • ) .

Now, specific bounds for both integrals (24),
(25) are obtained. For proper implication, a
bound for the second integral lEB(r) is first
derived as follows:

IlEB (r) 1:5: c- (c), 0:5: r:5: T, (26)

where Cr(e:) --+0 as e:--+ O. Detailed derivations
of (26) are gathered in Appendix B. In obtaining
(26), a general Lipschitz condition on I has been
assumed as follows:

I/(a, 8, e, r) -/(a, 8', e', r')I:5:LM-8'1

+ Lllle-e'll +Lllr- r'[, LI=constant>O. (27)

The satisfaction of (27) for our case is obvious.
Now for the first integral 1<A (r), a bound as
follows is obtained:

11<A(r)I=e:l
w 11

/(a, 8 E(a), eE(a), eo)

- I (a, 8a(e:a), eEO'.Ba(EO') (a), e:a) Ida:5: cLllWI

([LIE (so) 1+ lIeE(a) - eEO'.Ba('O') (a) II> do. (28)

It is shown in Appendix C that (27) again
ensures

l
w 1'le

E(a) -eEO'.8a<EO')(a)llda:5:B. (29)

Finally, the combination of (20), (26) and
(28) - (29) yields:

ILI, (r) I:5: ILIE (0) 1+Lll"LI, (s) 1d5 + c- (s)

+cLIB. (30)

The Bellman-Gronwall inequality then gives

ILIE(r) 1:5: eL1'(LIE(0) + Cr (s) +cLIB) ,

O:5:r:5:T (31)

which again implies

sup ILIE(r) != supI8E(r ) -8a(r)I:5:Br(e:)
Os: rS: T Os: rS: T

(32)

where Br(e:) --+0 as e:--+ O.
All the above developments are now summar

ized as follows:
Theorem 2 : Consider (13) - (14) and ( IS)

with appropriate regularity conditions. Then for
fixed and sufficiently small e.

sup 18'(t)-8all(t)I:5:Br(e:) (33)
Os:ts: TIE

where B» (s) --+ 0 as e: --+ O.
Remark 4 : Theorem 2 asserts the closeness of

the two solutions of (13) and (15) for sufficiently
small e:. It does not yet connect the stability
properties between (13)-(14) and (15). However
with further assumptions on fall the following
theorem can be stated.

Theorem 3 : Consider (13) - (14) and (15)
with appropriate regularity conditions. Assume
further that the averaged system (15) is
exponentially stable. Then the trivial solutions 8 E

(t) =0, e' (t) =0 are exponentially stable for
sufficiently small c.

Proof: The proof follows exactly that of Theo
rem 4.3 in (Hong and Bentsman, I994a) .

4. Application and Simulations

In this section the averaging theorems are
applied to the convergence analysis of the control
ler parameter errors to zero.
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a neighborhood of the zero equilibrium where
both a and b have exponential convergence to
zero.

2) Frozen State Analysis: The error dynamics
with a frozen state error equation are defined by
(8a, b) and (12), where a and b in (12) are
assumed to be frozen. The solution of (12) is in
the same form of (38) except kn= (am- a) (n7r)

2_ (bm - b). The averaged system corresponding
to (5) and (Sa, b) will be nonlinear. Since the
stability of the zero equilibrium of a nonlinear
system can be determined by the linearized system
at that equilibirum point, the result of case 1
already implies the stability of the zero solution
of case 2.

3) Simulations : Let the plant be given with
homogeneous boundary conditions as

~t=a(et)~xx+b(et)~+u, O~x~l, t~O

~(O, t) =~(l, t) =0, ~(x, 0) =O.2sin(J!'X)

where ai.et) and bt.et) are unknown time-vary
ing coefficients. In simulations, however, they are

Note that all initial conditions are set to zero
since they do not affect the final form of the
averaged system. The solution of (36) with r (x,

t) =¢(x) is of the form

~"'(x, t)=~A(I-e-knt)li'n(X) (37)
n;l k«

1) Linear Analysis: To see an explicit expres
sion for the averaged system, (5) and (8a, b) are
linearized around zero, following the work of
Anderson et al. (1986). Then, we have

ii=c< e, ~mxx> - a, (34a)
b=c<e, ~m>-b, (34b)

et=amexx+bme- (a~mxx+ fj~m),

e(O, t) =e(l, t) =0, e(x, 0) =0, (35)

~mt = am~mxx+ bm~m+ r,
~m(O, t) =~m(l, t) =0, ~m(X, 0) =0. (36)

where kn=am(mf)2-bm, li'n(X) =sin(mrx), and
¢n=2(¢(x), li'n(X). Similarly, the solution of
(35) is of the form

e(x, t) =i:Jl1

e-kn(t-<1)F; (6) dO-]li'n (x) (38)

where F« (t) = - 2( a~mxx+ fj~m, li'n(x)>
¢n(n7r)2 (l_e-knt) a_..!b-(l_e-knt) b.

kn kn
The substitution of (37) and (38) into (34a, b)

and the application of (16) to the right hand side
of (34a, b) yield:

r

w ¢n2(n7r)4
00 pn2(nJf)2j

[ ~J = - e ~l 2kn3
- n~l 2kn

3 [~J
b _ f: ¢/(nJf)2 f:K b

n;[ 2kn3
n=[ 2kn3

-lim rto+T[~(et)Jdt
T-oo)to b (ct)

=eA8+2nd Term (39)

where tr A<O and det A>O (see Hong and
Bentsman (1994b). Note that if ci and 6 are
almost periodic functions, the second term in (39)
becomes zero. Therefore, the trivial solution of
(39) is exponentially stable if there exists at least
one ¢n*O, which is one of the Fourier coeffi
cients of ¢(x), which is the case that ¢(x) *0 on
at least one interval of nonzero measure. Com
bined with the results of Theorem 3, this implies
that the zero equilibrium of (5) and (8a, b) is
uniformly asymptotically stable, and that there is
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assumed to be 2.5-sin(ct) and 0, respectively,
with c=O.1. Let the reference model be

';mt=0.5';mxx+5.O, O:5:x:5: I, t~O,

';m(O, t)=';m(l, t)=O, ';m(X, 0)=-sin(7lX).

The adaptive gain in (10) is chosen as 0.4. Figure
I and Fig. 2 show the behaviors of the reference
model and the plant, respectively. Figure 3 shows
the exponential convergence of the state error e
(x, t) to zero. Figure 4 shows the exponential
convergence of the estimated parameter ii (t) to
the plant parameter a (ct) .
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where

where

(B. 5)

(8. 2)

(B. I)

Ba(.sa),

'P,,(r) --> 0,

+L1 sup le"O',8a(,,0')(a)-er.8a(r)(a)[
re- l

:::;:;(15"" l"E- 1+ ncs

From the Lipschitz condition (27). the first term

(8. 4a) is bounded as

!'P<a(r)I~Ll sup IBa(.sa)-Ba(r)1
'Z"E-

l s; as; rs'" + ncs

as .s ..... O.
To prove (8. 2) 'P,,(r) is considered into three

pieces as follows:

(B. 3)

Then, (25) can be written as

as e ..... 0 uniformly in O~ t ~ T. Therefore, the

following result holds:

L1
II"B(s)l~cr(.s)=T sup 1'P,,(r)! ..... O,

Os; rS; T

rTC-J+ncs

'P"a(r)=n;:I)Wl [/(a, Ba(.so) , e"O',8a«0')

(a), eo) -f(a, Ba(r), er,8a{r)(a), r)Jda,
(8. 4a)

(rE:-1+ncs

'P"b(r) =n;:l)Wl [/(0, Ba(r), er,8a(r,(a),

r) - fav(Ba(r), r) ] do, (B.4b)

'P"c(r) =n;:11,~",-I+n<s[/av(Ba(r), r) -fav(Ba

(w), so) Jdo. (B. 4c)

f
re-r e-xes

'P" ( r ) = «:' [j (a,
Te- 1

e"O',8a("0') (a), eo) - fav (Ba (.sa), so) Jdo,

and O~s~T. In the sequel it will be shown that

IIF(t, z)-F(t, z')llk=lI(a-ii)emxx+(b-b)
em- (a- ii')emxx- (b- b')emIl2+~I<e, err>
+<e, emxx>-<e', exx>+<e', erx>-<e', e~>
-<e', emxx>12+.s21<e, e>+<e, em>-<e', e>
+<e', e>-<e', e'>-<e', em>12~llemxxIl2Iii-ii'12
+lIemll 21 b- b'12+.s2(llerxIl2+llemxrI12+IIe.:OrIl2

) lie
- e'1I2+ .s2(lleI12+llemI12+lle'112) lie - e'1I2

•

Hence 11F(t, z)-FU, z')IIH~C21Iz-z'IIH'

(A. 4)

+a- ii) Jr2+ (bm+ b- b)2J fe2(x) dx- aii2

-ab2~-C1<Z, Z>H, (A. 3)

where C1= min{(am+a-ii)~-(bm+b- b)'
a}>O, and (am+a-ii)~L1a~O is assumed.

Now by the linearity of A, we see that tol - A is

monotone (accretive) for every w~ C. Hence

A : D (A) c n ..... H is the infinitesimal genera

tor of a linear process {S(t)}t:oo={(E(t, 0), A
(t), B (t) }t:oo on H (See (Walker, 1980), Theo

rem 3.2, p. 92). Note that the first component E
(t, 0) is generated by A o. Note also that E (t, 0)
eo is the strong solution of the evolution equation

e (t) = Aoe (t) for every eoE D (Ao) .

Now set z= (e. ii, b) and z'= (e', ii', b').
Then

where E(t, s) is the evolution operator associat

ed with A o in the space L 2(0, I).

where C2 is a constant. Therefore F : H ..... H is

locally Lipschitz continuous in H. Thus a unique

solution exists. Finally the solution of (5) can be

written in the following variation of constant

formula (Henry, 198I; Pazy, 1983)

e(t)=E(t,O)e(O)+ lIE(t, r)(-iZ(r)
emrr(r)-b(r)em(r»dr, (A. 5)

Appendix B. Bound (26)

Following the work of (Solo, 1996), the inte

gral (25) is divided into small pieces as follows.

Introduce a sequence of increasing integers N"
--> 00 as e ..... 0 such that {n,,} is an increasing

sequence:

n"=~T =~ ..... 00 as .s ..... O..slY" .s

To bound the first term in (8. 5) we use the

following

Since fav (.) also obeys the Lipschitz condition, it

follows that

IBa(.sO') - Ba(r) I~Ll(h+lw-rI) 1.s0'- r],
which again implies that
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sup 18a(co) -8a(r) \:::;: OtsLI(k+Ots)
Te-1:S;:l1.s:.re- l+n,s

:::;:OtTLI(k+otT),

for 0:::;: r:::;: T.
To bound the second term in (8. 5), differenti

ate (12) with respect to 8.

e1tr.B= (am- ii) e1:-tr.B+ (bm- Ii) e:,B

_ [exxlr.B] _ [~mxx]
er.B ~m

where eB aer.B(eJ) and the other terms withr.B a8

subscripts are defined similarly. By differentiating
(12) with respect to t, a similar equation for e;.B
is derived. The following results now hold from
the parabolic boundedness lemma of Appendix
D.

Ilaer.B(eJ)/arll:::;:B, and Ilaer.B(eJ)/aell:::;:B. (B. 6)

Then the second term in (8. 5) is bounded by

LIB sup (!eeJ- rI + I8a (so) - Oa (r) j)
l"E-I:S;:I1~te-l+nrS

- ( -) - + (b b-) - .•Tae- am - a e xx m- e - CJ t a8 .

Now apply the parabolic boundedness lemma of
Appendix 0 to deduce

provided Ifl:::;:B, ,,~~ II:::;:B. The first inequality

follows from (27). The second one follows from

Appendix C, since II Oall:::;: h.

Appendix D. Parabolic Boundedness
Lemma

Lemma D : Consider the following time-vary
ing parabolic system:

Vt= [am- at.t) ] VXX+ [bm-13(0 ] V+ hi», 0,
v(O, t)=v(l, t)=O, v(x, 0)=0. (D. I)

Assume that am-a(t) ~L/a=constant,bm-I3(t)
~O, and Ilkll:::;:B for all t where B is a constant.

Then, Ilvll:::;:BL/;;-{~IAn4r2.
Proof: The parabolic system (D. I) has a

solution

by similar arguments given above. Finally, we
have

l'Pta(r) l:::;:otB,

for 0:::;: r:::;: T. Therefore, (8. 2) holds for 'Pta (r).

Through similar analysis it can be shown that (B.

2) holds for 'PtC (r) and 'Ptb (r), respectively.

Appendix C. Fast State Dynamics

ee

v(x. 0 = ~ 'Pn(X) vn(t),
n=l

where v (t) satisfies

(0.2)

In this appendix a bound for the fast state is
obtained. Rewrite (5) as

e.> (am- ii) exx+ (bm- b) e-h(t, if),

where hl.t, if) = [~mxx ~mJ if. Denoting e (0 =
e.t.Ba(ttl (t), the following approximate system is
introduced using (12)

de _ ae [ae JT aif
dt - at + ao at

=(am-ii) exx+(bm-b) e-h(t, if)

f T[ ae ]+c ao'

where exx=exXltt.Ba(tt)(t). Thus the error
dynamics between e (t) and e(t) is obtained as

Vn(t)=-kn(t)vn(t)+<'Pm h), (0.3)

kn (t) = (am- at t) (ml') 2+ (bm-I3(t)·

Also the solution to (D. 3) is given by

Which finally implies

(
'" )1/2 ( ce )112Ilv(x, 011= ~lV~(t) :::;:BL/;;-I ~IAn4

as required.


